

Colorado CTE Course – Scope and Sequence

Course Name	Robotics ar	nd Mechatronics	Course Details	Credit = 1.0	
	Technology	7 II	Course = 0.50 Carnegie Unit Credit	Prerequisite: Robotics and Technology I	Mechatronics
				CTE Credential: CTE Manuf	acturing
Course Description	In this class will learn abo Programmin	students will research, design out Pneumatics, Hydraulics, E g by designing and building ro	n, and build projects based Electronics and Mechanica Obotic systems.	l on the field of robotics automa I Design along with basics in C	ation. Students ontrol and
Note:	This is a sugge adapted, make	sted scope and sequence for the co sure all essential knowledge and sk	urse content. The content will w ills are covered.	ork with any textbook or instructional	resource. If locally
SCED Identification #	21009	Schedule calculation based on 60 guest speakers, student presentation	calendar days of a 90-day seme ions, field trips, remediation, or o	ester. Scope and sequence allows for other content topics.	additional time for
All courses taught in an a	approved CTE problem	ogram must include Essential Skills und at <u>https://www.cde.state.cc</u>	embedded into the course conte <u> o.us/standardsandinstructio</u> 	ent. The Essential Skills Framework fonderstand the second s	or this course can
Instructional Unit Topic	Suggested Length of Instruction	CTE or Academic Standard Alignment	Competency / Performance Indicator	Outcome / Measurement	CTSO Integration
Safety		Demonstrate health and safety procedures, regulations, and personal health practices and determine the meaning of symbols, key terms, and domain-specific words and phrases as related to the Manufacturing sector workplace environment. Interpret policies, procedures, and regulations for the workplace environment, including	The student practices safe and proper work habits. The student is expected to: (A) master relevant safety tests; (B) comply with safety guidelines as described in various manuals, instructions, and regulations; (C) identify and classify hazardous materials and	Accurately read and interpret safety rules, including but not limited to the rules of handling high-pressure pneumatics and hydraulics. Analyze the implications of the various rules and employ them accordingly while working on mechatronic systems with control system components, explaining why certain rules apply. Identify and explain the intended use of safety equipment available in the	

	employer and employee responsibilities. Use health and safety practices for storing, cleaning, and maintaining tools, equipment, and supplies.	 wastes according to Occupational Safety and Health Administration (OSHA) regulations; (D) dispose of hazardous materials and wastes appropriately; (E) comply with established guidelines for working in a lab environment; (F) handle and store tools and materials correctly; (G) employ established inventory control and organization procedures; and (H) describe the results of negligent or improper maintenance. 	classroom. For example, demonstrate how to properly inspect, use, and maintain safe operating procedures with tools and equipment. Incorporate safety procedures and complete safety test with 100 percent accuracy.	
Fluid Power Systems		The student demonstrates an understanding of mechanical and fluid systems. The student is expected to:	Demonstrate understanding of the interrelationships and specific roles of (electro) pneumatic and hydraulic components and modules within a complex mechatronic system. For example, provide a written technical description of the expected changes in	

	(A) use mechanical	one or more systems on other	
	devices;	components and modules in	
		the total mechatronic system.	
	(B) use pneumatics		
	devices;	Identify the differences	
		between hydraulic and	
	(C) use hydraulics	pneumatic fluid power and	
	devices;	justify decisions regarding	
		when to use control systems	
	(D) define fluid power:	based on one component as	
	and	opposed to the other by	
		crafting and defending an	
	(F) compare and contrast	argument with specific	
	pneumatic and hydraulic	claim(s), reasoning and	
	power systems	supporting evidence.	
	pomeroyotemor		
		Create laboratory setups or	
		simple control systems that	
		apply hydraulic and	
		pneumatic principles such as	
		Boyle's Law and Pascal's Law.	
		Apply these principles to	
		solving problems and	
		troubleshooting mechatronic	
		systems, explaining the	
		reasoning behind each step.	
		Using real-world examples of	
		hydraulic/pneumatic systems,	
		and citing reputable print and	
		visual sources of such	
		systems, research the basic	
		components and functions in	
		a fluid power system. Create a	
		visual aid to summarize and	
		explain this information to	

			technicians or upper management. Measure and analyze basic physical properties of (electro) pneumatic and hydraulic components (such as cylinders, directional control valves, regulators, flow control valves, pumps, and motors) within a given system. Interpret resolved work orders by analyzing underlying issues and explaining the correct physical operation of the included components. Citing evidence from a technical description or actual observation of a mechatronic system, describe the flow of fluid energy in a given mechatronic system or subsystem. Create a graphic illustration to represent the transfer of energy from one component to others in the system.	
Computers and Control Systems	Understand how computers and control systems are used in mechatronic systems, modules, and subsystems. Understand fundamental control system design and develop systems that	The student develops the ability to use and maintain technological products, processes, and systems. The student is expected to:	Research the different roles of programmable logical controllers (PLCs) in complex mechatronic systems, modules, and subsystems, and be able to verbally describe their components and operation to others.	

complete preprogrammed	(A) demonstrate the use	Collaboratively create a	
tasks.	of computers to	technical document for a new	
	manipulate a robotic or	technician that explains the	
Program a computing device	automated system and	basic components of a PLC,	
to control systems or	associated subsystems;	addressing how the role of a	
process.		PLC varies in different systems	
	(B) troubleshoot and	(such as mechatronic systems,	
	maintain systems and	modules, and subsystems).	
	subsystems to ensure		
	safe and proper function	Demonstrate understanding	
	and precision operation;	of the flow of information in a	
		given mechatronic system or	
	(C) implement feedback	subsystem, focusing on the	
	control loops used to	control function of PLCs in the	
	provide information; and	system. Create both a	
		schematic and explanatory	
	(D) implement different	narrative to describe the flow	
	types of sensors used in	of information to/from an	
	robotic or automated	equipment operator.	
	systems and their		
	operations.	Given a control scenario,	
		bound by several logical	
		parameters, create Boolean	
		logic equations to prescribe	
		the use of logic gates in the	
		implementation of the	
		scenario. Show how they	
		apply to the functioning of a	
		real-world mechatronics	
		system, explaining the	
		reasoning involved.	
		Demonstrate understanding	
		of hexadecimal, decimal,	
		octal, binary, 2s complement,	
		and binary coded decimal	
		(BCD) values as used in a	

			common PLC. Write an explanation or develop and deliver a brief presentation of how these codes are relevant to mechatronic systems. Convert wiring and ladder diagrams for simple logic chores into PLC programs that use common instructions such as digital, logical, compare, compute, move, file, sequencer, and program control instruction sets.	
Robotic Systems	Understand how the principles of force, work, rate, power, energy, and resistance relate to mechanical, electrical, fluid, and thermal engineering systems. Identify the elements and processes necessary to develop a controlled system that performs a task. Demonstrate the use of sensors for data collection and process correction in controlled systems.	The student demonstrates an understanding of advanced mathematics and physics in robotic and automated systems. The student is expected to: (A) apply the concepts of acceleration and velocity as they relate to robotic and automated systems; (B) describe the term degrees of freedom and apply it to the design of joints used in robotic and automated systems;	Use mechanical tools, such as motors, gears, and gear trains in the construction of a robotic or automated system. Identify where forces are acting upon various points on the system and document with simple diagrams. Use the concepts of force, torque, and mechanical advantage to calculate the force acting upon the points in the system. Develop a system to demonstrate force, torque, work, and power acting upon or being done by a robotic or automated system. Justify the design by creating mathematical models that show the calculations.	

	(C) describe angular	
	momentum and	
	integrate it in the design	
	of robotic joint motion	
	stability and mobility:	
	stability, and mobility,	
	(D) use the impulse-	
	momentum theory in the	
	design of robotic and	
	automated systems;	
	(E) explain translational.	
	rotational and oscillatory	
	motion in the design of	
	robotic and automated	
	systems;	
	(F) apply the operation	
	of direct current (DC)	
	motors, including control,	
	speed, and torque;	
	(G) apply the operation	
	of servo motors	
	including control angle	
	and torquo.	
	and torque,	
	/··· · · ·	
	(H) Interpret sensor	
	feedback and calculate	
	threshold values;	
	(I) apply measurement	
	and geometry to	
	calculate robot	
	navigation:	

		(J) implement movement control using encoders; and(K) implement path planning using geometry and multiple sensor feedback.		
Technical Documents and Troubleshooting	Formulate and solve problems by using the appropriate units applied in mechanical, electrical, fluid, and thermal engineering systems.	The student develops a system using electrical controls and pneumatics or hydraulics devices. The student is expected to: (A) design a system that incorporates electrical controls and either a pneumatic or hydraulic device; (B) build a system that incorporates electrical controls and either a pneumatic or hydraulic device; and (C) test and troubleshoot the system that incorporates electrical controls and either a pneumatic or hydraulic device; and	Use appropriate instruments to measure and record electrical, light, and audio outputs of a robotic system. Compare measured data to acceptable norms for the system. Document whether the system is performing within accepted parameters and cite evidence to support the claims. Perform maintenance or follow recommended procedures to correct malfunctions or underperformance within the system. Write a justification for any maintenance that is performed, citing data obtained from test results. Referencing technical documents (such as data sheets, circuit diagrams, displacement step diagrams, timing diagrams, function charts, operations manuals, and schematics) for	

			pneumatic and hydraulic components within a mechatronic system, assess the required maintenance for such systems, taking appropriate measurements where needed, and perform the necessary adjustments on these systems. Document and	
			justify adjustments in an equipment log that can be referenced by technicians and engineers.	
			Troubleshoot malfunctioning pneumatic and hydraulic systems: identify the source of the problem(s), plan a multistep procedure to correct the malfunction, implement the plan, and verify the corrective action. Using appropriate technical language and terminology, document the cause of the malfunction and justify the procedure used to correct it.	
Career Development	Integrate multiple sources of career information from diverse formats to make informed career decisions, solve problems, and manage personal career plans.	Develop a career plan that reflects career interests, pathways, and postsecondary options. Student is expected to: (A) Research the scope of career opportunities available and the	Develop an informational annotated document, linked to bookmarked websites, illustrating the opportunities for students to investigate and experience engineering and technology while in school, focusing specifically on those programs offered by colleges	

	requirements for	and universities in Colorado	
	education, training,	and other states. For example,	
	certification, and	opportunities include job	
	licensure;	shadowing, internships, co-op	
		programs, volunteer and	
	(B) Integrate changing	community service, and part-	
	employment trends,	time employment.	
	societal needs, and		
	economic conditions into	Research and select a	
	career planning;	company or organization for a	
		work-based learning project in	
	(C) Explore local	an engineering or technology	
	employment	area of choice. Cite specific	
	requirements; and	textual evidence from the	
		organization's literature,	
	(D) Develop practical	as well as independent news	
	skills for obtaining	articles to summarize:	
	employment.	a. The mission and history of	
		the organization	
		b. Headquarters and	
		organizational structure	
		c. Products or services	
		provided	
		d. Credentials required for	
		employment and how they	
		are obtained and maintained	
		e. Policies and procedures	
		f. Reports, newsletters, and	
		other documents published by	
		the organization	
		g. Website and contact	
		information	
		Search for the resumes of	
		engineers and technologists	
		retrieved from the websites of	
		institutions, organizations, or	

professional networks. Discuss what is typically included in the resumes of engineering and technology professionals, compare and contrast several examples, and create a personal resume modeled after elements identified in the search.

Conduct a job search and simulate the experience by researching local employment options.

In preparation for a future career in engineering or technology, complete an authentic job application form and compose a cover letter following guidelines specified in the vacancy announcement.

Participate in a mock interview. Prior to the interview, prepare a paper that includes the following: tips on dress and grooming, most commonly asked interview questions, appropriate conduct during an interview, and recommended follow-up procedures. Upon completion of the interview, write a thank you letter to the interviewer in a written or email format.

