

Colorado CTE Course – Scope and Sequence

Course Name	Electronics- Analog/Robotics		Course Details	Credit= 0.5	
			Course = 0.50 Carnegie Unit Credit	Prerequisite: Robotics and Automated Systems	
				CTE Credential: CTE Manuf STEM	acturing; CTE
Course Description	regulation, s breadboardi	emi-conductors, and robo ng circuits in the lab. Stud	otics will be conducted. Electro dents will program robots to pe		1
Note:		ested scope and sequence for t sure all essential knowledge a		ork with any textbook or instructional	resource. If locally
SCED Identification #	17111		on 60 calendar days of a 90-day seme entations, field trips, remediation, or o	ester. Scope and sequence allows for other content topics.	additional time for
All courses taught in an a		•	Skills embedded into the course conte ate.co.us/standardsandinstructio	ent. The Essential Skills Framework fon m/essentialskills	or this course can
Instructional Unit Topic	Suggested Length of Instruction	CTE or Academic Standard Alignment	Competency / Performance Indicator	Outcome / Measurement	CTSO Integration
Safety		Demonstrate health and safety procedures, regulations, and personal health practices and determine the meaning of symbols, key terms, and domain- specific words and phrases as related to the manufacturing sector workplace environment.	The student practices safe and proper work habits. The student is expected to: (A) master relevant safety tests; (B) comply with safety guidelines as described in various manuals, instructions, and regulations; (C) identify governmental and organizational regulations for health and safety in the	Accurately read and interpret safety rules, including but not limited to rules published by the National Science Teachers Association (NSTA), rules pertaining to electrical safety, Occupational Safety and Health Administration (OSHA) guidelines, and state and national code requirements. Be able to distinguish between the rules and explain why certain rules apply.	

		 workplace related to electronics; (D) identify and classify hazardous materials and wastes according to Occupational Safety and Health Administration (OSHA) regulations; (E) dispose of hazardous materials and wastes appropriately; (F) perform maintenance on selected tools, equipment, and machines; (G) handle and store tools and materials correctly; and (H) describe the results of improper maintenance of material, tools, and equipment. 	Identify and explain the intended use of safety equipment available in the classroom. For example, demonstrate how to properly inspect, use, and maintain safe operating procedures with tools and equipment.	
Career Development	Integrate multiple sources of career information from diverse formats to make informed career decisions, solve problems, and manage personal career plans.	The student demonstrates the skills necessary for success in a technical career. The student is expected to: (A) distinguish the differences between an engineering technician, engineering technologist, and engineer;	In teams, develop a persuasive paper or presentation arguing for the importance of electrical and/or computer engineers' contributions to society. Select several such contributions as justification, and provide compelling evidence for how	

	Identify career paths	(B) identify employment and	electrical/computer	
	available in	career opportunities;	engineers' designs are used in	
	manufacturing and		everyday applications.	
	electronics.	(C) identify industry	Incorporate a variety of	
		certifications;	sources to gather data,	
			including print and electronic;	
		(D) discuss ethical issues	cite each source, and briefly	
		related to engineering and	describe why the particular	
		technology and incorporate	source is reliable.	
		proper ethics in submitted		
		projects;	Research the postsecondary	
			institutions in Colorado that	
		(E) identify and demonstrate	offer electrical engineering or	
		respect for diversity in the	electrical and/or computer	
		workplace;	engineering technology.	
			Individually or in teams,	
		(F) identify and demonstrate	develop and publish	
		appropriate actions and	information that identifies	
		identify consequences relating	admissions criteria, the	
		to discrimination, harassment,	postsecondary programs of	
		and inequality;	study, and the secondary	
			courses that will prepare	
		(G) explore electronics	students for success after high	
		engineering careers and	school in electrical or	
		preparation programs;	computer engineering fields.	
			Cite each source adhering to	
		(H) explore career	standard citation conventions	
		preparation learning	used in engineering	
		experiences, including job	disciplines.	
		shadowing, mentoring, and		
		apprenticeship training	Investigate local employment	
			opportunities requiring skills	
			in robotics. Identify preferred	
			requirements and	
			certifications. Analyze the	
			student ICAP for gaps in	
			developing preferred	

			experience or requirements and identify ways to fulfill these requirements.	
Circuits, Sources, and Loads	Understand and apply electrical scientific concepts to electronic operations and component functions.	Student understands and apply electrical concepts. Student is expected to: (A) define charge, current, voltage (B) understand concepts related to sources and Loads: power, resistors, sources (C) understand how scientific laws and principles are used in DC circuit analysis: Kirchhoff's laws, series and parallel resistors, voltage divider, current divider, Thevenin's theorem, analysis strategies; (D) understand Energy and power sources: batteries, efficiency, maximum power transfer; and (E) apply AC concepts: DC and AC, sinusoidal functions, AC voltage and current, RMS		
Power Supplies	Understand how power supplies are used in analog electronic components and systems.	Apply understanding of power supplies ad diodes to analog electronic components and systems. Student is expected to:		

		 A) explain Diode characteristics, construction and operation; B) identify diode order models; C) understand half wave rectifiers and how to calculate peak output voltage; D) explain how capacitors function; E) understand voltage ripple; F) understand concepts related to full wave rectifiers: voltage ripple, transformers G) identify Voltage regulators doublers, and inductors; H) understand how DC-DC converters function and identify transistors as switches, RL circuits, and switched regulators.
Machines and Power Electronics	knowledge of DC funct motors to analog applic electronics and simple expect	erstand how DC motors ion in analog electronic cations. Student is cted to : A) Apply concepts of the work done by simple machines: force on a conductor, motor and

Linear Amplifiers	Understand the conceptAmplifier concepts: inputof amplification inresistance and outputanalog electronics.resistance, gain, offset,
	generator action, commutation, DC motors; (B) apply Faraday's law, to DC generators, and AC motors; (C) understand how DC machines operate; (D) define terminology related to DC machines: equivalent circuit model, torque/current and voltage/speed relationships, performance parameters, efficiency; (E) define terminology related to AC machines: rotating magnetic fields, synchronous machines, inductor motors, comparison of electric machines; (F) understand concepts related to Power electronics: speed control of DC motors, pulse width modulation, H bridges, and H-bridge drive of DC motors.

	Explain the operation of circuits using transistors in switching mode to achieve a variable DC output.	maximum output voltage and current, differential amplifiers Op-amps: concept, equivalent circuit model, inverting, non- inverting and summing amplifiers, power op-amps Transistors: principles of BJTs and MOSFETs, simple models, linear amplifier configurations Frequency dependent gain: frequency response, RC transfer function, cross-over frequency, low pass and high pass filters	
RLC Circuits	Explain the transient behavior of RLC circuits.	Superposition Norton's Theorem Mesh analysis Nodal analysis Time domain response: RC, RL and RLC networks, transient response, steady state DC response, step response, periodic response	
Steady State Sinusoidal Analysis	Use piecewise linear models to predict the steady state behavior of simple diode and transistor circuits, AC and DC motors.	Complex signals and impedance: complex exponentials, complex arithmetic in Cartesian and polar form, complex impedance Phasors Filters: RC filters, buffered and unbuffered bandpass filters, RL filters, active filters Resonant Circuits: series and parallel resonant	

	circuits, resonant frequency, bandwidth, quality factor	